Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Asian J Surg ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641539

RESUMEN

OBJECTIVE: This article is a Meta-analysis aiming to systematically evaluate the difference in efficacy of immune checkpoint inhibitor in patients with non-small cell lung cancer (NSCLC) by age. METHODS: We performed a Meta-analysis of published randomized controlled trials concerning for patients with NSCLC by age. We compared overall survival among three groups (age <65 years, age 65-75 years, age ≥75 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected and pooled. RESULTS: A total of 10,291 patients from 17 RCTs were included. In the group under age 65 years, immune checkpoint inhibitor can significantly prolong the overall survival of patients with NSCLC (HR = 0.73, 95% CI: 0.66∼0.81, P < 0.00001). In the age 65-75 years group, immune checkpoint inhibitors prolonged overall survival in patients with NSCLC (HR = 0.78, 95% CI:0.71∼0.84, P < 0.00001). However, it has no significant effect on the overall survival of NSCLC patients (HR = 0.88, 95% CI:0.72∼1.08, P > 0.05) in the group older than 75 years. CONCLUSIONS: Immune checkpoint inhibitors prolonged the overall survival of NSCLC patients in the age <65 years group and the age 65-75 years group, but in the age ≥75 years group, there was no significant effect on overall survival. This may be related to innate immune and adaptive immune dysregulation due to "immunosenescence" in older patients.

2.
Cell Rep ; 43(3): 113814, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38402585

RESUMEN

Alternative splicing (AS) of messenger RNAs occurs in ∼95% of multi-exon human genes and generates diverse RNA and protein isoforms. We investigated AS events associated with human epidermal differentiation, a process crucial for skin function. We identified 6,413 AS events, primarily involving cassette exons. We also predicted 34 RNA-binding proteins (RBPs) regulating epidermal AS, including 19 previously undescribed candidate regulators. From these results, we identified FUS as an RBP that regulates the balance between keratinocyte proliferation and differentiation. Additionally, we characterized the function of a cassette exon AS event in MAP3K7, which encodes a kinase involved in cell signaling. We found that a switch from the short to long isoform of MAP3K7, triggered during differentiation, enforces the demarcation between proliferating basal progenitors and overlying differentiated strata. Our findings indicate that AS occurs extensively in the human epidermis and has critical roles in skin homeostasis.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Empalme Alternativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Isoformas de Proteínas/metabolismo , Exones
3.
Nat Commun ; 15(1): 1648, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388476

RESUMEN

Hydroxyl radicals (OH) determine the tropospheric self-cleansing capacity, thus regulating air quality and climate. However, the state-of-the-art mechanisms still underestimate OH at low nitrogen oxide and high volatile organic compound regimes even considering the latest isoprene chemistry. Here we propose that the reactive aldehyde chemistry, especially the autoxidation of carbonyl organic peroxy radicals (R(CO)O2) derived from higher aldehydes, is a noteworthy OH regeneration mechanism that overwhelms the contribution of the isoprene autoxidation, the latter has been proved to largely contribute to the missing OH source under high isoprene condition. As diagnosed by the quantum chemical calculations, the R(CO)O2 radicals undergo fast H-migration to produce unsaturated hydroperoxyl-carbonyls that generate OH through rapid photolysis. This chemistry could explain almost all unknown OH sources in areas rich in both natural and anthropogenic emissions in the warm seasons, and may increasingly impact the global self-cleansing capacity in a future low nitrogen oxide society under carbon neutrality scenarios.

4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349061

RESUMEN

Extrachromosomal circular DNA (eccDNA) is currently attracting considerable attention from researchers due to its significant impact on tumor biogenesis. High-throughput sequencing (HTS) methods for eccDNA identification are continually evolving. However, an efficient pipeline for the integrative and comprehensive analysis of eccDNA obtained from HTS data is still lacking. Here, we introduce eccDNA-pipe, an accessible software package that offers a user-friendly pipeline for conducting eccDNA analysis starting from raw sequencing data. This dataset includes data from various sequencing techniques such as whole-genome sequencing (WGS), Circle-seq and Circulome-seq, obtained through short-read sequencing or long-read sequencing. eccDNA-pipe presents a comprehensive solution for both upstream and downstream analysis, encompassing quality control and eccDNA identification in upstream analysis and downstream tasks such as eccDNA length distribution analysis, differential analysis of genes enriched with eccDNA and visualization of eccDNA structures. Notably, eccDNA-pipe automatically generates high-quality publication-ready plots. In summary, eccDNA-pipe provides a comprehensive and user-friendly pipeline for customized analysis of eccDNA research.


Asunto(s)
ADN Circular , Neoplasias , Humanos , ADN Circular/genética , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación Completa del Genoma
5.
Biophys J ; 123(3): 389-406, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38196190

RESUMEN

Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.


Asunto(s)
VIH-1 , Simulación de Dinámica Molecular , VIH-1/metabolismo , Unión Proteica , Membranas/metabolismo , Lípidos , Membrana Celular/metabolismo
6.
Nat Commun ; 14(1): 7603, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990022

RESUMEN

Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.


Asunto(s)
Aprendizaje Profundo , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica , Algoritmos , Modelos Estadísticos
8.
Natl Sci Rev ; 10(8): nwad179, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554586

RESUMEN

Activation of inflammasomes-immune system receptor sensor complexes that selectively activate inflammatory responses-has been associated with diverse human diseases, and many nanomedicine studies have reported that structurally and chemically diverse inorganic nanomaterials cause excessive inflammasome activation. Here, in stark contrast to reports of other inorganic nanomaterials, we find that nickel-cobalt alloy magnetic nanocrystals (NiCo NCs) actually inhibit activation of NLRP3, NLRC4 and AIM2 inflammasomes. We show that NiCo NCs disrupt the canonical inflammasome ASC speck formation process by downregulating the lncRNA Neat1, and experimentally confirm that the entry of NiCo NCs into cells is required for the observed inhibition of inflammasome activation. Furthermore, we find that NiCo NCs inhibit neutrophil recruitment in an acute peritonitis mouse model and relieve symptoms in a colitis mouse model, again by inhibiting inflammasome activation. Beyond demonstrating a highly surprising and apparently therapeutic impact for an inorganic nanomaterial on inflammatory responses, our work suggests that nickel- and cobalt-containing nanomaterials may offer an opportunity to design anti-inflammatory nanomedicines for the therapeutics of macrophage-mediated diseases.

9.
Aging Cell ; 22(10): e13947, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594178

RESUMEN

Glia and neurons face different challenges in aging and may engage different mechanisms to maintain their morphology and functionality. Here, we report that adult-onset downregulation of a Drosophila gene CG32529/GLAD led to shortened lifespan and age-dependent brain degeneration. This regulation exhibited cell type and subtype-specificity, involving mainly surface glia (comprising the BBB) and cortex glia (wrapping neuronal soma) in flies. In accordance, pan-glial knockdown of GLAD disrupted BBB integrity and the glial meshwork. GLAD expression in fly heads decreased with age, and the RNA-seq analysis revealed that the most affected transcriptional changes by RNAi-GLAD were associated with upregulation of immune-related genes. Furthermore, we conducted a series of lifespan rescue experiments and the results indicated that the profound upregulation of immune and related pathways was not the consequence but cause of the degenerative phenotypes of the RNAi-GLAD flies. Finally, we showed that GLAD encoded a heterochromatin-associating protein that bound to the promoters of an array of immune-related genes and kept them silenced during the cell cycle. Together, our findings demonstrate a previously unappreciated role of heterochromatic gene silencing in repressing immunity in fly glia, which is required for maintaining BBB and brain integrity as well as normal lifespan.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/genética , Neuroglía/metabolismo
10.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429639

RESUMEN

The histone demethylase Lsd1 has been shown to play multiple essential roles in mammalian biology. However, its physiological functions in thymocyte development remain elusive. We observed that the specific deletion of Lsd1 in thymocytes caused significant thymic atrophy and reduced peripheral T cell populations with impaired proliferation capacity. Single-cell RNA sequencing combined with strand-specific total RNA-seq and ChIP-seq analysis revealed that ablation of Lsd1 led to the aberrant derepression of endogenous retroelements, which resulted in a viral mimicry state and activated the interferon pathway. Furthermore, the deletion of Lsd1 blocked the programmed sequential down-regulation of CD8 expression at the DP→CD4+CD8lo stage and induced an innate memory phenotype in both thymic and peripheral T cells. Single-cell TCR sequencing revealed the kinetics of TCR recombination in the mouse thymus. However, the preactivation state after Lsd1 deletion neither disturbed the timeline of TCR rearrangement nor reshaped the TCR repertoire of SP cells. Overall, our study provides new insight into the function of Lsd1 as an important maintainer of endogenous retroelement homeostasis in early T-cell development.


Asunto(s)
Interferones , Retroelementos , Ratones , Animales , Retroelementos/genética , Timo , Diferenciación Celular/genética , Receptores de Antígenos de Linfocitos T , Mamíferos
11.
Cell Discov ; 9(1): 55, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308475

RESUMEN

Understanding tumor heterogeneity and immune infiltrates within the tumor-immune microenvironment (TIME) is essential for the innovation of immunotherapies. Here, combining single-cell transcriptomics and chromatin accessibility sequencing, we profile the intratumor heterogeneity of malignant cells and immune properties of the TIME in primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) patients. We demonstrate diverse malignant programs related to tumor-promoting pathways, cell cycle and B-cell immune response. By integrating data from independent systemic DLBCL and follicular lymphoma cohorts, we reveal a prosurvival program with aberrantly elevated RNA splicing activity that is uniquely associated with PCNS DLBCL. Moreover, a plasmablast-like program that recurs across PCNS/activated B-cell DLBCL predicts a worse prognosis. In addition, clonally expanded CD8 T cells in PCNS DLBCL undergo a transition from a pre-exhaustion-like state to exhaustion, and exhibit higher exhaustion signature scores than systemic DLBCL. Thus, our study sheds light on potential reasons for the poor prognosis of PCNS DLBCL patients, which will facilitate the development of targeted therapy.

12.
Protein Cell ; 14(8): 603-617, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930538

RESUMEN

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.


Asunto(s)
Luz , Retina , Animales , Ratones , Adaptación a la Oscuridad , Células Fotorreceptoras Retinianas Conos/metabolismo , Adaptación Ocular , Neuroglía/fisiología , Comunicación Celular , Hormonas Tiroideas
14.
Sci Adv ; 9(4): eadd2175, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696508

RESUMEN

Although mitotic chromosomes are highly compacted and transcriptionally inert, some active chromatin features are retained during mitosis to ensure the proper postmitotic reestablishment of maternal transcriptional programs, a phenomenon termed "mitotic bookmarking." However, the dynamics and regulation of mitotic bookmarking have not been systemically surveyed. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we examined 6538 mitotic L02 human liver cells of variable stages and found that chromatin accessibility remained changing throughout cell division, with a constant decrease until metaphase and a gradual increase as chromosomes segregated. In particular, a subset of chromatin regions were identified to remain open throughout mitosis, and genes associated with these bookmarked regions are primarily linked to rapid reactivation upon mitotic exit. We also demonstrated that nuclear transcription factor Y subunit α (NF-YA) preferentially occupied bookmarked regions and contributed to transcriptional reactivation after mitosis. Our study uncovers the dynamic and regulatory blueprint of mitotic bookmarking.


Asunto(s)
Cromatina , Cromosomas , Humanos , Cromatina/genética , Factores de Transcripción/genética , Mitosis/genética
15.
J Environ Sci (China) ; 127: 143-157, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522048

RESUMEN

The coastal eco-city of Fuzhou in Southeastern China has experienced severe ozone (O3) episodes at times in recent years. In this study, three typical synoptic circulations types (CTs) that influenced more than 80% of O3 polluted days in Fuzhou during 2014-2019 were identified using a subjective approach. The characteristics of meteorological conditions linked to photochemical formation and transport of O3 under the three CTs were summarized. Comprehensive Air Quality Model with extensions was applied to simulate O3 episodes and to quantify O3 sources from different regions in Fuzhou. When Fuzhou was located to the west of a high-pressure system (classified as "East-ridge"), more warm southwesterly currents flowed to Fuzhou, and the effects of cross-regional transport from Guangdong province and high local production promoted the occurrence of O3 episodes. Under a uniform pressure field with a low-pressure system occurring to the east of Fuzhou (defined as "East-low"), stagnant weather conditions caused the strongest local production of O3 in the atmospheric boundary layer. Controlled by high-pressure systems over the mainland (categorized as "Inland-high"), northerly airflows enhanced the contribution of cross-regional transport to O3 in Fuzhou. The abnormal increases of the "East-ridge" and "Inland-high" were closely related to O3 pollution in Fuzhou in April and May 2018, resulting in the annual maximum number of O3 polluted days during recent years. Furthermore, the rising number of autumn O3 episodes in 2017-2019 was mainly related to the "Inland-high", indicating the aggravation of cross-regional transport and highlighting the necessity of enhanced regional collaboration and efforts in combating O3 pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Procesos Fotoquímicos , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Estaciones del Año , China
16.
Elife ; 112022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36468689

RESUMEN

We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe the approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt-series alignments, beam-induced motions of the particles throughout the tilt-series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, particularly for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.


Asunto(s)
Electrones , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Teorema de Bayes , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos
17.
Cell Rep ; 41(6): 111606, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351407

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, and CD4+ T cells are known to promote SLE development. Here, we explore heterogeneities in the CD4+ T cell regulome and their associations with SLE pathogenesis by performing assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and single-cell transcriptome sequencing (single-cell RNA sequencing [scRNA-seq]) of peripheral CD4+ T cells from 72 SLE patients and 30 healthy controls. Chromatin accessibility signatures of CD4+ T cells are correlated with disease severity. Further, we generate 34,176 single-cell transcriptomes of healthy and SLE CD4+ T cells and reveal transcriptional dysfunction of regulatory T (Treg) cells, identifying two Treg subpopulations, among which the CCR7lowCD74hi Treg subgroup features type I interferon-induced functional exhaustion in SLE patients. These transcriptome-level findings for SLE Tregs are mirrored in trends from the ATAC-seq data. Our study establishes a rich empirical foundation for understanding SLE and uncovers previously unknown contributions of Treg with exhaustion-like properties to SLE pathogenesis.


Asunto(s)
Lupus Eritematoso Sistémico , Linfocitos T Reguladores , Humanos , Linfocitos T CD4-Positivos/patología , Cromatina/metabolismo , Subgrupos de Linfocitos T/metabolismo , Perfilación de la Expresión Génica
18.
Infect Immun ; 90(11): e0017722, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36317875

RESUMEN

Human alveolar echinococcosis (AE) is a tumor-like disease predominantly located in the liver. The cellular composition and heterogeneity of the lesion-infiltrating lymphocytes which produce an "immunosuppressive" microenvironment are poorly understood. Here, we profiled 83,921 CD45+ lymphocytes isolated from the peripheral blood (PB), perilesion (PL), and adjacent normal (AN) liver tissue of four advanced-stage AE patients using single-cell RNA and T-cell receptor (TCR) sequencing technology. We identified 23 large clusters, and the distributions and transcriptomes of these cell clusters in the liver and periphery were different. The cellular proportions of exhausted CD8+ T cells and group 2 innate lymphoid cells (ILC2s) were notably higher in PL tissue, and the expression features of these cell subsets were related to neoplasm metastasis and immune response suppression. In the 5 CD8+ T-cell populations, only CD8+ mucosa-associated invariant T (MAIT) cells were enriched in PL samples and the TRAV1-2_TRAJ33_TRAC TCR was clonally expanded. In the 11 subsets of CD4+ T cells, Th17 cells and induced regulatory T cells (iTregs) were preferentially enriched in PL samples, and their highly expressed genes were related to cell invasion, tumor metastasis, and inhibition of the inflammatory immune response. Exhaustion-specific genes (TIGIT, PD-1, and CTLA4) were upregulated in Tregs. Interestingly, there was a close contact between CD8+ T cells and iTregs or Th17 cells, especially for genes related to immunosuppression, such as PDCD1-FAM3C, which were highly expressed in PL tissue. This transcriptional data set provides valuable insights and a rich resource for deeply understanding the immune microenvironment in AE, which could provide potential target signatures for AE diagnosis and immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Inmunidad Innata , Humanos , Hígado , Células Th17 , Proteínas de Neoplasias , Citocinas/metabolismo
19.
Nat Microbiol ; 7(10): 1635-1649, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36151403

RESUMEN

Population antibody response is thought to be important in selection of virus variants. We report that SARS-CoV-2 infection elicits a population immune response that is mediated by a lineage of VH1-69 germline antibodies. A representative antibody R1-32 from this lineage was isolated. By cryo-EM, we show that it targets a semi-cryptic epitope in the spike receptor-binding domain. Binding to this non-ACE2 competing epitope results in spike destruction, thereby inhibiting virus entry. On the basis of epitope location, neutralization mechanism and analysis of antibody binding to spike variants, we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of the identified population antibody response. These substitutions, including L452R (present in the Delta variant), disrupt interactions mediated by the VH1-69-specific hydrophobic HCDR2 to impair antibody-antigen association, enabling variants to escape. The first Omicron variants were sensitive to antibody R1-32 but subvariants that harbour L452R quickly emerged and spread. Our results provide insights into how SARS-CoV-2 variants emerge and evade host immune responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Formación de Anticuerpos , Epítopos/genética , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
Front Oncol ; 12: 942488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992841

RESUMEN

Purpose: This study aimed to examine the effect of selective inferior parathyroid gland autotransplantation on central lymph node dissection(CLND) and incidence of postoperative hypoparathyroidism in patients undergoing endoscopic radical resection of thyroid carcinoma. Methods: The data of 310 patients undergoing endoscopic radical resection of thyroid carcinoma will be retrospectively analyzed. The patients will be divided into the experimental group and the control group according to whether they combined with parathyroid autotransplantation. Statistics of the incidence rate of postoperative hypoparathyroidism, the concentration of PTH and Calcium in the systemic circulation at different time points in the two groups, the concentration of PTH in the cubital fossa vein in the transplantation region in the experimental group, and the number of central lymph nodes and positive lymph nodes dissection will be carried out. Results: The incidence rate of temporary and permanent hypoparathyroidism in the experimental group was 33.75% and 0.625%, respectively, and in the control group was 22% and 5%, respectively; its difference was statistically significant (X2 = 10.255, P=0.006). Parathyroid autotransplantation increased incidence of transient hypoparathyroidism (OR, 1.806; Cl, 1.088-2.998; P=0.022), and lower incidence of permanent hypoparathyroidism (OR, 0.112; Cl, 0.014-0.904; P=0.040). The diameters of thyroid cancer nodules was not associated with the occurrence of transient hypoparathyroidism (OR, 0.769; Cl, 0.467-1.265; P=0.301) or permanent hypoparathyroidism (OR, 1.434; Cl, 0.316-6.515; P=0.641). Comparison of systemic circulation PTH, between the two groups showed that the PTH of patients in the experimental group was higher than that in the control group from 1 week to 12 months after the operation, and the difference was statistically significant (P<0.05). In the experimental group, from 1 week to 12 months after surgery, PTH concentrations was significantly higher in the cubital fossa of the transplantation side than in the contralateral side, and the differences were statistically significant (P<0.05). The mean number of central lymph node dissected per patient was significantly higher in the experimental group (7.94 ± 3.03 vs. 6.99 ± 2.86; P <0.05); The mean number of positive nodes per patient was significantly higher in the experimental group (3.16 ± 1.86 vs. 2.53 ± 1.59; P <0.05). Conclusions: In endoscopic radical resection of thyroid carcinoma, parathyroid autotransplantation is more beneficial to postoperative parathyroid glands function recovery, effectively preventing postoperative permanent hypoparathyroidism and realizing more thorough CLND.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...